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Effects of particle shape on electromagnetic torques: A comparison
of the effective-dipole-moment method with the Maxwell-stress-tensor method
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Two methods for calculating the torque exerted by a rotating field upon a particle have emerged: (a)
The effective-dipole-moment method and (b) the Maxwell-stress-tensor method. It has previously been
assumed that in nonlossy systems, both methods will yield identical results. In this paper we show that
significant differences appear depending upon the particle shape.

PACS number(s): 87.10.+e¢, 87.22.As

I. INTRODUCTION

The development of physical methods that are capable
of probing the properties of intact biological cells is an
active topic of current experimental and theoretical in-
terest. Among the rich variety of methods currently be-
ing developed are two well-known ones: the dielectro-
phoretic (DEP) levitation method and the method of elec-
trorotation. Both these methods afford, in a complemen-
tary manner, information regarding the dielectric proper-
ties of the cell. The theoretical analysis underlying this
type of experimentation has been discussed in consider-
able detail, and an extensive list of background references
has been provided in a recent paper by Wang, Pethig, and
Jones [1]. These authors show that the two experimental
methods stated above are, respectively, sources of infor-
mation for the real and imaginary parts of the well-
known Claussius-Mossotti factor. Descriptions of some
of the advances in the experimental technology can be
found in several recent papers, for example, a combina-
tion of both dielectrophoresis and electrorotation have
been used in a recent experimental study carried out by
Fuhr et al. [2]. In this paper we focus our attention on
one of the aspects within the theory of electrorotation of
nonspherical cells (in particular those of ellipsoidal shape)
which appears to have been neglected in all discussions of
the subject. It is well known that electrorotation is the
rotational motion of the cell resulting from the torque
that is exerted upon it by the field. As a consequence of
this the theoretical study of the origin of the torque has
been of some interest.

An examination of the literature in this field shows that
two methods of calculating the torque have evolved.

(1) The effective-dipole-moment method in which the
effective dipole moment induced on the cell by the exter-
nal field is first computed and then the torque exerted on
this (the dipole) by the field is calculated by using stan-
dard formulas of classical mechanics. This approach is a
very elegant one and has been developed into a successful
tool largely due to the recent efforts of Miller and Jones

[3].
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(2) The Maxwell-stress-tensor method in which the
force per unit area exerted on the surface of the cell by
the electromagnetic field is calculated by wusing the
Maxwell stress tensor and the cross product of this sur-
face force density with the radial vector integrated over
the entire cellular surface yields the torque. The details
of the derivations of the general equations for this
method can be found in any standard textbook on elec-
tromagnetism, for example, in the well-known book by
Landau and Lifshitz [4].

Of the two methods listed above the second one is quite
cumbersome since it involves the computation of surface
integrals that may be quite difficult to obtain for certain
geometrical shapes. As a consequence of this much of
the work carried out in the field has employed the first
method of calculation. Recently, however, Sauer [5,6]
has raised some serious doubts about the validity of this
approach for lossy systems (The meaning of this term is
often confused. As far as this paper is concerned, by a
“lossy” system we mean a system in which the dipoles,
which are either permanently present or have been in-
duced by the external field, are unable to keep up with
the oscillations of the external ac field and thus cause a
dissipation of energy to occur.) Sauer has insisted that
the second exact approach must be used in such cases. In
Ref. [5] the main burden of the paper has been concerned
with the calculation of the force exerted on the center of
mass of a particle using the stress-tensor approach and an
attempt has been made to show the differences of this
method from the more conventional methods of comput-
ing the ponderomotive force, for example, that due to
Sher [7]. Unfortunately a similar comparison of the
torque is not easy to make since the formalism tends to
get fairly cumbersome in the Maxwell-stress-tensor ap-
proach. It has been tacitly assumed that the two methods
will lead to identical results and that differences will only
be observed when dealing with “lossy” systems. In this
paper we show that even if a dc rotating field is used with
a nonlossy ellipsoidal particle the two methods are not
identical and the results are strongly dependent upon the
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particle geometry. Only in the case of spherical particles
do the results from the two approaches become identical.

II. CALCULATIONS

Since most cells that are encountered in nature are, in
general, nonspherical in shape we will select, for the pur-
poses of this paper, an ellipsoidal cell with a homogene-
ous internal structure. The three axes will be taken to be
a > b >c with the largest axis a oriented along the x axis
of a Cartesian frame and a frequency-independent electri-
cal external field rotating in the yz plane as shown in Fig.
1. The cell will be assumed to be suspended in a liquid
medium with real dielectric constant ¢;.

We now consider the torque as calculated by the two
methods.

A. The effective-dipole-moment method

According to this method the torque can be found by
using a well-known formula of classical mechanics that
equates the torque experienced by a dipole in an external
field to the cross product of the dipole moment p (in the
present case an induced dipole moment) and the applied
field E:

T=pXE,. (1)

This equation has been generalized by Miller and Jones
[3] for lossy systems by considering the time averages of
the corresponding expression that is obtained when all
the quantities are replaced by their complex counter-
parts. For the purposes of this paper we will consider
real fields only. In a well-known textbook on elec-
tromagnetism Stratton [8] has derived an expression for
the potential that would be observed outside an ellip-
soidal particle in which a dipole has been induced by the
application of an external field. With the geometrical ar-
rangement shown in Fig. 1 this potential expression may
be utilized to extract the form of the induced dipole mo-
ment that is the cause of the potential. Written in terms
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FIG. 1. Diagram displaying the coordinate frame and the ro-
tating field in the yz plane.
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of its components this induced dipole moment is given by

__ 4mabc € €
Pa™ 3 b € EOa ’
1+ | = —1

2 €;

a=x,y,orz. (2)

Here, €, is the dielectric constant of the particle, ¢, is the
dielectric constant of the surrounding liquid, and A4, is
an integral that is defined as follows:

A =f°o ds
“ Yo (s+a?)Vis+a)s +b3)(s +c?)

a=a, b,orc. (3)

Once these quantities have been defined the torque can be
very easily calculated using the standard formula given
above.

B. The Maxwell-stress-tensor method

The basic advantage of this method lies in the fact that
it utilizes the Poynting vector which is a quantity that
remains invariant in mathematical form whether or not
the medium under consideration is lossy. This nature of
the Poynting vector ensues from the fact that the tangen-
tial component of electrical fields retain their continuity
across all surfaces (irrespective of the nature of the ma-
terials on either side). A discussion regarding the invari-
ance properties of the Poynting vector may be found in
Sec. 80 of Ref. [4].

According to the classical theory of electromagnetism,
an electromagnetic field is described by the four classical
vectors D, E, B, and H. The precise definitions of these
vectors may be found in any standard textbook on elec-
tromagnetism, for example Ref. [8]. It is also well known
that these fields must satisfy equations of motion com-
monly referred to as Maxwell’s equations and, conse-
quently, the equation of motion of any other quantity
dependent upon them may be derived by the application
of these standard differential equations. As mentioned
above, the electromagnetic momentum density or Poynt-
ing vector (for which we employ the symbol p,) is a
quantity whose definition remains independent of the na-
ture of the system and in order to compute the surface
force density we require its equation of motion.

We begin by writing down the explicit form of p, in
terms of the four basic vectors of the electromagnetism
and then we endeavor to compute the rate of change of
p. which is equal to the force experienced by the cell

(EXH) . (4)

_ |1
Pe= |3

c

Here, c is the speed of light. If we differentiate p, with
respect to the time (¢) we will obtain time derivatives of
both the electrical and magnetic fields which in turn may
be expressed in terms of Maxwell’s equations and the
final result written in a form of a conservation law. The
precise details of this calculation are fairly tedious and
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are also well understood. They have been discussed in a
more general context by deGroot and Mazur [9] and
within the confines of the spherical version of the present
problem by Sauer [5,6]. In view of this we will content
ourselves with the final result:

ap.
ot

Here, the quantity & is called the Maxwell stress tensor
and is defined as

=V-7. (5)

EE—%[EIZT , (6)

=< __
o=

€
4
where 1 is the unit tensor. We now proceed to employ
Eq. (6) to calculate the torque density 7. In order to

achieve this end we consider the angular momentum den-
sity £ given by ’

L=rXp, , (7)

where r is a vector that is directed from the center of
mass of the cell to a point where the angular momentum
is required. The torque density is obtained by calculating
the time derivative of the angular momentum density
vector and utilizing Egs. (4) and (6). The total torque is
then given by the volume integral of the density. The
final formula may be expressed in terms of an integral
over the cellular surface and is given by

fdas

where da; is a surface element of the cell and ng is a unit
normal. In Eq. (8) the field E is the field that resides out-
side the cell.

From Eq. (8) we see that the first quantity that must be
obtained is the field E outside the cell. In order to
achieve this we consider a primary field due to a charge
density located upon suitable conductors that function as
electrodes and furthermore we assume that the remainder
of space, both within and without the cell, is charge free.
Thus the potential may be obtained by solving the
Laplace’s equation with appropriate boundary condi-
tions. This equation being

V=0, 9)

ik rXE(E-n,)— L |EArxn,) (8)
41 s 2 s ’

where v is the potential function. The solution of Eq. (9)
must satisfy the following boundary conditions.

(i) At infinity the field due to this potential ¥ must be
identical with the field E; due to the electrodes alone.

(ii) At the surface of discontinuity between the ellip-
soidal cell and the surrounding medium the tangential
components of the field inside and outside must be con-
tinuous:

n,XE=n,XE~, (10)

where E™ and E are the electrical fields inside and out-
side the cell, respectively.

(iii) The normal components of the displacement vec-
tors within and without must display a difference equal to

the charge density which is assumed to be zero in the
present case:

€/(n;-E)—¢,(n;-E)=0. (11

Since the cell we are considering is of ellipsoidal shape
it is convenient to first transform Eq. (8) into ellipsoidal
coordinates and then obtain solutions within this frame.
Fortunately much of this work has already been done by
Hobson [10] and a detailed account thereof may be found
in his well-known textbook. We will content ourselves
with the final results. Within an ellipsoidal coordinate
frame of reference a point (x,y,z) in a Cartesian-
coordinate system is expressed in terms of three new vari-
ables (p, 6, and ¢). These two sets of coordinates are re-
lated to each other as follows:

x=pcosf ,
y=(p*—h?*)%in6 coss ,
z=(p*—k?)"%sinfsing , (12)

k?<p*<c, h*<k? h>0,
0<60=<m 0<¢=<27.

It is easy to see the close similarities with the more famil-
iar polar spherical coordinate system. If, indeed, we set
h=k =0 in Eq. (12) we immediately recover a sphere
with radius p. It follows that the parameters 4 and k are
related to the departure of an ellipsoid from a sphere.
This feature may be clearly seen, if we consider the fol-
lowing equations to hold with regards to the ellipsoid un-
der consideration:

h2=02_b2’ k2=(12_(,’2 . (13)

In an ellipsoidal coordinate frame any point in space lies
on an ellipsoidal surface. The surface of the cell itself is
one such surface characterized by the parameters a,b,
and c¢. This special ellipsoid (the cell surface) will be re-
ferred to as the fundamental ellipsoid in order to distin-
guish it from all the other surfaces used for characteriz-
ing points either inside or outside the cell.

The Laplace equation may be solved by using the
method outlined by Hobson [10] in terms of the so-called
ellipsoidal harmonics. These functions play the same role
as the spherical harmonics in a polar coordinate frame.
By taking the negative gradient of the potential ¥ with
the gradient operator V expressed in ellipsoidal coordi-
nates the field E may be obtained and on the surface of
the fundamental ellipsoid we have

3

E=E,———

1
A-p+——n,n,p . 14
Sme, p 61 ngng -p (14)

Here, V is the volume of the ellipsoid and A is a diagonal
3 X3 matrix in which the diagonal elements are the three
integrals defined in Eq. (3):

A, 0 0
A=|0 4, 0 |. (15)
0 0 4,
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In the case of a sphere of radius a the three components
are equal:

1 00
A=F 010 (16)
oo 1

The vector p is the effective dipole moment vector
defined by Eq. (2).

Two important quantities, n; and da, in Eq. (8), still
remain to be defined. Fortunately both these quantities
are obtainable by the application of standard methods of
differential geometry and a good account is available in
Chap. I of Ref. [8] and the results are as follows:

ns=hi[i(l/a)nx+j(1/b)ny+k(1/c)nz] ,
p
n, =cosf, n,=sin6cosp, n,=sinbsing ,
an
172
_ | cos®0 | sin*6cos’p , sin’Osin’*¢p
hy=a|——+ b2 + 2 ’
c

a
da;=bc sinbh,d0d¢ .

The quantity 4, is often referred to as a scale factor and
is related to the metric tensor of differential geometry.

In the next stage of the analysis we substitute Egs. (14)
and (17) into the general torque equation (8) and the re-
|

1

2E(2)X3‘—

_&
T_Efdas XXy — 87

sz%

3 X.x¢+ 1
grver ¢ 212

%(xlx,; —X5X3+X5x,)+
1
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sult may be expressed in a compact form if the following
definitions are employed:

x;=rXE,, (18a)
x;=n,"Eg, (18b)
x;=rXn, , (18c)
X4=n,-Ap, (18d)
xs=EyAp, (18e)
Xg=n,p, (180
x;=rXA4p, (18g)
xg=A'p, (18h)
r=ian, +jbn, +kcn, . (19)

Here, r is the radial vector from the center of mass to the
surface of the ellipsoid. This vector plays a very crucial
role in determining the role played by the actual
geometry of the cell as far as the torque is concerned.
This fact may be easily recognized if a comparison is
made between the vectors ng, defined in Eq. (17), and r.
For cellular shapes where these two vectors are parallel
all terms involving their cross products in the set of Egs.
(18) must vanish. This will indeed be the situation in the
case of a sphere where the three axes a,b, and c are equal.
The torque may now be expressed with Eq. (18) as

_1
XgXg 5 XX

X1 X6

1
+
Ve Ji 641726 %

(20)

Owing to the fact that an ellipsoid possesses a considerable amount of symmetry several of the integrals appearing in
Eq. (20) vanish and only those terms with integrands containing even powers of the variables n,, n,, and n, persist.
Consequently we may with impunity ignore all other terms.

It is possible to work with all the components of the torque vector T appearing in Eq. (20) but, for our purposes, it is
sufficient to consider just the x component alone and the properties of the others will follow from symmetry. In
evaluating Eq. (20) for the x component the following three integrals appear and may be expressed in terms of elementa-
ry functions:

2 2 2
ny . ny _ n; _ 47
fdasz—fdas—p—fdash—P—Tbc. 1)
In addition to the above three relatively simple integrals we also obtain
2.2
, n,n bc o ™ sin®6 cos?¢ sin> be
J=[da, e =0 [0y [Tqe— SinOcosésind b, (22)
h, a“vo 0 cos@+s1n Ocos“¢d | sin‘Osin‘y a
a? b? c?
T
The explicit details regarding the computation of this in- T= € fda rXE(E-n.)— 1 |E|2(rXn,)
tegral have been relegated to the appendix. 41 s 2 s

Considering only the nonvanishing integrals and the
fact that all three components may be obtained by sym-
metry from the x component the torque vector can be ex-
pressed as follows:

ET1+T2+T3 N (23)

1
T1—761—fdas(rXEo)(ns-p) , (24)
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3
T,=— da (rX A-p)n;-p), (25)
2 8aveé J pnsP
1
T3=—T26%fdas(r><ns)(ns-p)2 . (26)

In the case of a body that possess a shape such that the
vectors r and n; are parallel (for example, in the case of a
sphere) T, must vanish. For the case of a sphere where
Eq. (16) is valid the vector T; also vanishes leaving only
T, which is the source of the expression for the torque as
calculated by the approximate effective dipole method.

Returning once again to the x component of the torque
we obtain, by substituting Egs. (21) and (22) into the x
components of Egs. (24), (25), and (26),

__abc

T1x=73y (EozPy —Eoyp:) » @7n
abc
zx=WPyPZ(Az—A3>, (28)
a3 ’
T3X=Wpypz ?—? J. (29)

1 3
szz;T—(EOZpy_Eprz)_*_mj_F( A,— AB)pypz—

=T, +T,,+T;5, .

It is easy to see that the first term of this equation is
indeed the result that is obtained from the effective-
dipole-moment method (scaled by a factor of 1/4).
There are, however, additional terms that appear, even in
the nonlossy system, that we are considering in this pa-
per. Before we comment on these terms we present a
graphical comparison of the relative magnitudes to con-
vince ourselves that these terms are indeed significant
quantities.

ITI. GRAPHICAL COMPARISON

In Fig. 2 we plot the three terms appearing in Eq. (30)
as a function of the ratio of the dielectric constants of the
solid to that of the liquid (€, /€;). The dielectric constant
of the liquid is taken to be 80. It is easy to see that,
within the Maxwell-stress-tensor model, the contribu-
tions T,, and T,, dominate as € >>¢€; and are much
larger than the effective dipolar torque.

IV. CONCLUSIONS

In the classical theory of the torque exerted by a rotat-
ing electrical field (as discussed in Ref. [8] the energy of

the particle is first computed in the form of an integral
J

FIG. 2. Graph showing the relative magnitudes of the three
terms T, T,,, and T, appearing in Eq. (30) as a function of
the dielectric ratio. Ellipsoidal axes ratio used: a:b:c =8:4:2

Introducing the results obtained above into Eq. (23)
along with the expression for the integral J' computed in
the Appendix the final equation for the x component of
the torque is given by

3bcP;—b%*c?—a%c?—a’h?

arVaibi—c?)  DPe

(30)

over its volume. The result of this calculation is an ex-
pression that involves the field within the particle and the
angle it makes with the externally applied field. It is the
differentiation of this energy expression with respect to
this angle that produces the torque equation (1). In this
expression the details of the surface play a very minor
role since they, basically, only provide the limits of the
volume integration. In the Maxwell-stress-tensor method
it is the field outside the particle that plays the crucial
role and the integration over the surface of the particle is
sensitive to the actual geometry of the particle. The two
terms T, and T; shown in Egs. (25) and (26) result from
the fact that on the surface of an ellipsoidal particle the
vectors n; and A4 -p are not at all points parallel to r.

Despite the fact that the result we have obtained from
the Maxwell-stress-tensor method is different from that
obtained from the traditional effective dipole method it is
possible to recast our result into a similar form. This can
be achieved if a different expression for the effective di-
pole moment is adopted. If we write the terms of T,
and T, in Egs. (28) and (29) explicitly and in the first
term replace p, by its definition in terms of E,, obtained
from Eq. (2) while in the second term replace p, in an
analogous manner by E oy> W€ obtain

T,=P,Eo,—P,E,, , (31)
p =1 abc A,(e,—¢€)p, 2a*be (e, —€)J'p, (32)
YE x4y abc(e,—€;)A3+2€;  3V%abc(e,—€;)A;+2¢
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P 1 abc A;(e,—€,)p,

2a‘ce;(e,—€)J'p,

2= 4P an abele,—e) A, +2¢,

3V%abc(e,—¢€;) A, +2¢
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APPENDIX

The computation of the angular integral J is most conveniently carried out in the first octant:

sin’6 cos’4 sin’¢p

J:8f07r/2d¢f017/2d6

sin’0 sin’¢

cos?0 | sin%0 cos’¢
P 2 2
a b c

The integration over the variable ¢ can be carried out ex-
actly for the fundamental ellipsoid in which the three
axes are unequal and the result is given by

72k, —p,—2V ky(k,—p;)

IE )
4p}
S I S (A2)
pl c 2 b2 ’
o = cos?0 | sin%6
2T g2 c?

The final integration over the variable 6 yields the quanti-
ty J and it can be written in a compact form as follows:

S 4mb%c*(3bcPy—b’c’—a’c’—a’h?) A3
3a%(b?—c?)? ’

where

P3=foldx\/(b2—az)xz—i-az\/(cz—az)x2—f-a2 . (A4

The integral P, has to be calculated numerically.
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